Banksia prionotes
Banksia prionotes subsp. var. | Acorn Banksia, Orange Banksia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Banksia prionotes, commonly known as Acorn Banksia or Orange Banksia, is a species of shrub or tree of the genus Banksia in the family Proteaceae. It is native to the southwest of Western Australia and can reach up to 10 m (30 ft) in height. It can be much smaller in more exposed areas or in the north of its range. This species has serrated, dull green leaves and large, bright flower spikes, initially white before opening to a bright orange. Its common name arises from the partly opened inflorescence, which is shaped like an acorn. The tree is a popular garden plant and also of importance to the cut flower industry.
Banksia prionotes grows as a tree up to 10 m (30 ft) high in southern parts of its distribution, but in northern parts it is usually a shorter tree or spreading shrub, reaching about 4 m (13 ft) in height; it diminishes in size as the climate becomes warmer and dryer further north.[1] It has thin, mottled grey, smooth or grooved bark, and tomentose young stems. The alternate dull green leaves are 15–27 cm (6–11 in) long, and 1–2 cm (⅓–⅔ in) wide, with toothed leaf margins made up of triangular lobes, and often a wavy surface.[2][3]
Flowers occur in a typical Banksia flower spike, an inflorescence made up of hundreds of small individual flowers, or florets, densely packed around a cylindrical axis. B. prionotes has cream-coloured flowers with a bright orange limb that is not revealed until the flower fully opens. Known as anthesis, this process sweeps through the inflorescence from bottom to top over a period of days, creating the effect of a cream inflorescence that progressively turns bright orange. The old flower parts fall away after flowering finishes, revealing the axis, which may bear up to 60 embedded follicles. Oval or oblong in shape and initially covered in fine hairs, these follicles are from 14 to 20 mm (0.55–0.8 in) long and 6–11 mm (0.25–0.4 in) wide, and protrude 3–6 mm (0.1–0.25 in) from the cone. Inside, they bear two seeds separated by a brownish woody seed separator. The matte blackish seeds are wedge-shaped (cuneate) and measure 8–10 mm (0.3–0.4 in) long by 5–6 mm (0.2–0.25 in) wide with a membranous 'wing'.[2][3]
The root system consists of a main sinker root, and up to ten lateral roots extending from a non-lignotuberous root crown. The main sinker root grows straight down to the water table; it may be up to 15 m (50 ft) long if the water table is that deep. Typically from 3 to 5 cm (1.4–2 in) in diameter immediately below the root crown, roots become gradually finer with depth, and may be less than half a centimetre (0.2 in) wide just above the water table. Upon reaching the water table, the sinker branches out into a network of very fine roots. The laterals radiate out horizontally from the base of the plant, at a depth of 3–10 cm (2.4–4 in). They may extend over 5 m (15 ft) from the plant, and may bear secondary laterals; larger laterals often bear auxiliary sinker roots. Lateral roots seasonally form secondary rootlets from which grow dense surface mats of proteoid roots, which function throughout the wetter months before dying off with the onset of summer.[4][5][6]
Summer-only shoot growth is maintained throughout the life of the plant, except that in mature plants, seasonal shoot growth may cease with the formation of a terminal inflorescence rather than a resting bud.[6][7] Inflorescence development continues after shoot growth ceases, and flowering commences in February or March. March and April are the peak months for flowering, which ends in July or August.[8]
Annual growth increases exponentially for the first eight years or so, but then slows down as resources are diverted into reproduction and the greater density of foliage results in reduced photosynthetic efficiency.[7]
Cultivation
Propagation
Pests and diseases
Varieties
Gallery
References
- ↑ Cowling, R. M.; Lamont, B. B. (1985). "Variation in serotiny of three Banksia species along a climatic gradient". Australian Journal of Ecology 10 (3): 345–50. doi:10.1111/j.1442-9993.1985.tb00895.x.
- ↑ 2.0 2.1 George, Alex S. (1981). "The genus Banksia L.f. (Proteaceae)". Nuytsia 3 (3): 239–473. Template:ISSN.
- ↑ 3.0 3.1 Template:Cite encyclopedia
- ↑ Jeschke, W. Dieter; Pate, John S. (1995). "Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphology". Journal of Experimental Botany 46 (289): 895–905. doi:10.1093/jxb/46.8.895.
- ↑ Pate, John S.; Jeschke, W. Dieter; Aylward, Matt J. (1995). "Hydraulic architecture and xylem structure of the dimorphic root systems of South-West Australian species of Proteaceae". Journal of Experimental Botany 46 (289): 907–15. doi:10.1093/jxb/46.8.907.
- ↑ 6.0 6.1 Pate, John S.; Bell, T. L. (1999). "Application of the ecosystem mimic concept to the species-rich Banksia woodlands of Western Australia". Agroforestry Systems 45 (1/3): 303–41. doi:10.1023/A:1006218310248.
- ↑ 7.0 7.1 Pate, John S.; Jeschke, Dieter; Dawson, Todd E.; Raphael, Carlos; Hartung, Wolfram; Bowen, Barbara J. (1998). "Growth and seasonal utilisation of water and nutrients by Banksia prionotes". Australian Journal of Botany 46 (4): 511–532. doi:10.1071/BT97045.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedTaylor_1988
External links
- w:Banksia prionotes. Some of the material on this page may be from Wikipedia, under the Creative Commons license.
- Banksia prionotes QR Code (Size 50, 100, 200, 500)